V1HpChoice

polyaxon._flow.matrix.params.V1HpChoice()

Choice picks a value from a of list values.

params:
  paramTest:
    kind: choice
    value: [1, 2, 3, 4, 5]
from polyaxon.schemas import V1HpChoice
param_test = V1HpChoice(value=[1, 2, 3, 4, 5])

V1HpPChoice

polyaxon._flow.matrix.params.V1HpPChoice()

PChoice picks a value with a probability from a list of [(value, probability), (value, probability), …].

params:
  paramTest:
    kind: pchoice
    value: [(1, 0.1), (2, 0.1), (3, 0.8)]
from polyaxon.schemas import V1HpPChoice
param_test = V1HpPChoice(value=[("A", 0.1), ("B", 0.1), ("C", 0.8)])

V1HpDateRange

polyaxon._flow.matrix.params.V1HpDateRange()

DateRange picks a value from a generated list of values using [start, stop, step], you can pass values in these forms:

  • ["2019-06-24", "2019-06-25", 3600 * 24]
  • {start: "2019-06-24 00:00", stop: "2019-06-28 00:00", step: 1}

Step (frequency): represents a timedelta in days.

params:
  paramTest:
    kind: daterange
    value: ["2019-06-22", "2019-07-25", 1]
from polyaxon.schemas import V1HpDateRange
param_test = V1HpDateRange(value=["2019-06-22", "2019-06-25", 2])

V1HpDateTimeRange

polyaxon._flow.matrix.params.V1HpDateTimeRange()

DateTimeRange picks a value from a generated list of values using [start, stop, step], you can pass values in these forms:

  • ["2019-06-24T21:20:07+02:00", "2019-06-25T21:20:07+02:00", 3600]
  • {start: "2019-06-24 00:00", stop: "2019-06-28 00:00", step: 3600 * 4}

Step (frequency): represents a timedelta in seconds.

params:
  paramTest:
    kind: datetimerange
    value: ["2019-06-22 21:00", "2019-06-25 21:00", 3600]
from polyaxon.schemas import V1HpDateTimeRange
param_test = V1HpDateTimeRange(value=["2019-06-22 21:00", "2019-06-25 21:00", 3600])

V1HpRange

polyaxon._flow.matrix.params.V1HpRange()

Range picks a value from a generated list of values using [start, stop, step], you can pass values in these forms:

  • [1, 10, 2]
  • {start: 1, stop: 10, step: 2}
  • ‘1:10:2’
params:
  paramTest:
    kind: range
    value: [1, 10, 2]
from polyaxon.schemas import V1HpRange
param_test = V1HpRange(value=[1, 10, 2])

V1HpLinSpace

polyaxon._flow.matrix.params.V1HpLinSpace()

LinSpace picks a value from a generated list of steps from start to stop spaced evenly on a linear scale [start, stop, step], you can pass values in these forms:

  • [1, 10, 20]
  • {start: 1, stop: 10, num: 20}
  • ‘1:10:20’
params:
  paramTest:
    kind: linspace
    value: [1, 10, 20]
from polyaxon.schemas import V1HpLinSpace
param_test = V1HpLinSpace(value=[1, 10, 20])

V1HpLogSpace

polyaxon._flow.matrix.params.V1HpLogSpace()

LogSpace picks a value from a generated list of steps from start to stop spaced evenly on a log scale [start, stop, step] or [start, stop, step, base], where base is optional with 10 as default value, you can pass values in these forms:

  • [1, 10, 20]
  • [1, 10, 20, 2]
  • {start: 1, stop: 10, num: 20}
  • {start: 1, stop: 10, num: 20, base: 2}
  • ‘1:10:20:2’
params:
  paramTest:
    kind: logspace
    value: [1, 10, 20]
from polyaxon.schemas import V1HpLogSpace
param_test = V1HpLinSpace(value=[1, 10, 20])

V1HpGeomSpace

polyaxon._flow.matrix.params.V1HpGeomSpace()

GeomSpace picks a value from a generated list of steps from start to stop spaced evenly on a geometric progression [start, stop, step], you can pass values in these forms:

  • [1, 10, 20]
  • {start: 1, stop: 10, num: 20}
  • ‘1:10:20’
params:
  paramTest:
    kind: geomspace
    value: [1, 10, 20]
from polyaxon.schemas import V1HpGeomSpace
param_test = V1HpGeomSpace(value=[1, 10, 20])

V1HpUniform

polyaxon._flow.matrix.params.V1HpUniform()

Uniform draws samples from a uniform distribution over the half-open interval [low, high), you can pass values in these forms:

  • 0:1
  • [0, 1]
  • {‘low’: 0, ‘high’: 1}
params:
  paramTest:
    kind: uniform
    value: [0, 1]
from polyaxon.schemas import V1HpUniform
param_test = V1HpUniform(value=[0, 1])

V1HpQUniform

polyaxon._flow.matrix.params.V1HpQUniform()

QUniform samples from a quantized uniform distribution over [low, high] (round(uniform(low, high) / q) * q), you can pass values in these forms:

  • 0:1:0.1
  • [0, 1, 0.1]
  • {‘low’: 0, ‘high’: 1, ‘q’: 0.1}
params:
  paramTest:
    kind: quniform
    value: [0, 1, 0.1]
from polyaxon.schemas import V1HpQUniform
param_test = V1HpQUniform(value=[0, 1, 0.1])

V1HpLogUniform

polyaxon._flow.matrix.params.V1HpLogUniform()

LogUniform samples from a log uniform distribution over[low, high], you can pass values in these forms:

  • 0:1
  • [0, 1]
  • {‘low’: 0, ‘high’: 1}
params:
  paramTest:
    kind: loguniform
    value: [0, 1]
from polyaxon.schemas import V1HpLogUniform
param_test = V1HpLogUniform(value=[0, 1])

V1HpQLogUniform

polyaxon._flow.matrix.params.V1HpQLogUniform()

LogUniform samples from a log uniform distribution over[low, high], you can pass values in these forms:

  • 0:1:0.1
  • [0, 1, 0.1]
  • {‘low’: 0, ‘high’: 1, ‘q’: 0.1}
params:
  paramTest:
    kind: qloguniform
    value: [0, 1, 0.1]
from polyaxon.schemas import V1HpQLogUniform
param_test = V1HpQLogUniform(value=[0, 1, 0.1])

V1HpNormal

polyaxon._flow.matrix.params.V1HpNormal()

Normal draws random samples from a normal (Gaussian) distribution defined by [loc, scale], you can pass values in these forms:

  • 0:1
  • [0, 1]
  • {‘loc’: 0, ‘scale’: 1}
params:
  paramTest:
    kind: normal
    value: [0, 1]
from polyaxon.schemas import V1HpNormal
param_test = V1HpNormal(value=[0, 1])

V1HpQNormal

polyaxon._flow.matrix.params.V1HpQNormal()

QNormal draws random samples from a quantized normal (Gaussian) distribution defined by [loc, scale], you can pass values in these forms:

  • 0:1:0.1
  • [0, 1, 0.1]
  • {‘loc’: 0, ‘scale’: 1, ‘q’: 0.1}
params:
  paramTest:
    kind: qnormal
    value: [0, 1, 0.1]
from polyaxon.schemas import V1HpQNormal
param_test = V1HpNormal(value=[0, 1, 0.1])

V1HpLogNormal

polyaxon._flow.matrix.params.V1HpLogNormal()

LogNormal draws random samples from a log normal (Gaussian) distribution defined by [loc, scale], you can pass values in these forms:

  • 0:1
  • [0, 1]
  • {‘loc’: 0, ‘scale’: 1}
params:
  paramTest:
    kind: lognormal
    value: [0, 1]
from polyaxon.schemas import V1HpLogNormal
param_test = V1HpLogNormal(value=[0, 1])

V1HpQLogNormal

polyaxon._flow.matrix.params.V1HpQLogNormal()

QLogNormal draws random samples from a log normal (Gaussian) distribution defined by [loc, scale], you can pass values in these forms:

  • 0:1:0.1
  • [0, 1, 0.1]
  • {‘loc’: 0, ‘scale’: 1, ‘q’: 0.1}
params:
  paramTest:
    kind: qlognormal
    value: [0, 1, 0.1]
from polyaxon.schemas import V1HpQLogNormal
param_test = V1HpQLogNormal(value=[0, 1])